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Data analysis workflows in many scientific domains have become increasingly complex and 

flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) 

results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante 

hypotheses1. The flexibility of analytic approaches is exemplified by the fact that no two teams 

chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in 

hypothesis test results, even for teams whose statistical maps were highly correlated at 

intermediate stages of their analysis pipeline. Variation in reported results was related to several 

aspects of analysis methodology. Importantly, a meta-analytic approach that aggregated 

information across teams yielded significant consensus in activated regions across teams. 

Furthermore, prediction markets of researchers in the field revealed an overestimation of the 

likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our 

findings show that analytic flexibility can have substantial effects on scientific conclusions, and 

demonstrate factors possibly related to variability in fMRI. The results emphasize the importance 

of validating and sharing complex analysis workflows, and demonstrate the need for multiple 

analyses of the same data. Potential approaches to mitigate issues related to analytical variability 

are discussed.

Data analysis workflows in many areas of science have a large number of analysis steps that 

involve many possible choices (i.e., “researcher’s degrees of freedom”6,7). Simulation 

studies show that variability in analytic choices can have substantial effects on results8, but 

its degree and impact in practice has not been clear. Recent work in psychology addressed 

this through a “many analysts” approach9, in which the same dataset was analyzed by a large 

number of groups, uncovering substantial variability in behavioral results across analysis 

teams. In the Neuroimaging Analysis Replication and Prediction Study (NARPS), we 

applied a similar approach to the domain of functional magnetic resonance imaging (fMRI), 

where analysis workflows are complex and highly variable. Our goal was to assess, with the 

highest possible ecological validity, the degree and impact of analytic flexibility on fMRI 

results in practice. In addition, we estimated the beliefs of researchers in the field regarding 

the degree of variability in analysis outcomes using prediction markets to test whether peers 

in the field could predict the results2-5.

Variability of results across teams

The first aim of NARPS was to assess the real-world variability of results across 

independent teams analyzing the same dataset. The dataset included fMRI data from 108 

individuals, each performing one of two versions of a task previously used to study decision-

making under risk10. The two versions were designed to address a debate regarding the 

impact of gain/loss distributions on neural activity in this task10-12. A full description of the 

dataset is available in a Data Descriptor1; the dataset is openly available at DOI:10.18112/

openneuro.ds001734.v1.0.4.

Seventy teams (69 of whom had prior fMRI publications) were provided with the raw data, 

and an optional preprocessed data (with fMRIprep13). They were asked to analyze the data 

to test nine ex-ante hypotheses (Extended Data Table 1), each consisting of a description of 

significant activity in a specific brain region in relation to a particular feature of the task. 
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They were given up to 100 days to report whether each hypothesis was supported based on a 

whole-brain corrected analysis (yes / no). In addition, each team submitted a detailed report 

of the analysis methods they had used alongside unthresholded and thresholded statistical 

maps supporting each hypothesis test (Extended Data Table 2 and Extended Data Table 3a). 

In order to perform an ecologically valid study testing sources of variability that contribute 

to published literature “in the wild”, instructions to the team were as minimal as possible. 

The only instructions were to perform the analysis as they usually would in their own 

research and report the binary decision based on their own criteria for a whole-brain 

corrected result for the specific region described in the hypothesis. The dataset, reports and 

collections were kept private until after the prediction markets were closed.

Overall, the rates of reported significant findings varied across hypotheses (Extended Data 

Table 1 and Figure 1). Only one hypothesis (#5) showed a high rate of significant findings 

(84.3%), whereas three other hypotheses showed consistent non-significant findings across 

teams (5.7% significant findings). For the remaining five hypotheses, the results were 

variable, with 21.4% to 37.1% of teams reporting a significant result. The extent of the 

variation in results across teams was quantified by the fraction of teams reporting a different 

result than the majority of teams (i.e. the absolute distance from consensus). On average 

across the 9 hypotheses, 20% of teams reported a result that differs from the majority of 

teams; given that the maximum possible variation is 50%, the observed fraction of 20% 

divergent results thus falls midway between complete consistency across teams and 

completely random results, demonstrating that analytic choices have a major effect on 

reported results.

Factors related to analytic variability

To examine the sources of the analytic variability in the reported binary results, we analyzed 

the pipelines used by the teams as well as the unthresholded and thresholded statistical maps 

they provided. There were no two teams with identical analysis pipelines. After exclusions 

(Extended Data Table 3b), thresholded maps of 65 teams and unthresholded (z / t) maps of 

64 teams were included in the analyses. Fully reproducible code for all analyses of the data 

reported here are available at DOI: 10.5281/zenodo.3709273.

Variability of reported results.

A set of mixed effects logistic regression models identified several analytic variables and 

image features that were associated with reported outcomes (Extended Data Table 3c). The 

strongest factor was spatial smoothness; higher estimated smoothness of the unthresholded 

statistical maps (estimated using FMRIBs Software Library [FSL] smoothest function) was 

associated with greater likelihood of significant outcomes (p < 0.001, delta pseudo-R2 = 

0.04; mean FWHM 9.69 mm, range 2.50 - 21.28 mm across teams). Interestingly, while 

estimated smoothness was related to the width of the applied smoothing kernel (r = 0.71; 

median applied smoothing 5 mm, range 0-9 mm across teams), the applied smoothing value 

itself was not significantly related to positive outcomes in a separate analysis, suggesting 

that the relevant smoothness arose from analytic steps beyond explicit smoothing (such as 

modeling of head motion, p = 0.014). An effect on outcomes was also found for the software 
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package used (p = 0.004, delta pseudo-R2 = 0.04; N = 23 [SPM], 21 [FSL], 7 [AFNI], 13 

[Other]), with FSL being associated with a higher likelihood of significant results across all 

hypotheses compared to SPM; odds ratio = 6.69), and for the effect of different multiple test 

correction methods (p = 0.024, delta pseudo-R2 = 0.02: N = 48 [parametric], 14 

[nonparametric], 2 [other]), with parametric correction methods leading to higher rates of 

detection than nonparametric methods. No significant effect was detected for use of 

standardized preprocessed data versus custom preprocessing pipelines (48% of included 

teams used fMRIprep; p = 0.132) or the modeling of head motion parameters (used by 73% 

of the teams; p = 0.281). Nonparametric bootstrap analyses confirmed the significant effect 

of spatial smoothness, but provided inconsistent support for the effects of multiple testing 

and software package; because of low power, these results should be interpreted with 

caution.

Variability of thresholded statistical maps.

The nature of analytic variability was further explored by analyzing the submitted statistical 

maps. The thresholded maps were highly sparse. Binary agreement between thresholded 

maps over all voxels was relatively high (median percent agreement ranged from 93% to 

99% across hypotheses), largely reflecting agreement on which voxels were not active. 

However, when restricted to voxels showing activation for any team, overlap was very low 

(median similarity ranging from 0.00 to 0.06 across hypotheses). This may have reflected 

variability in the number of activated voxels found by each team; for every hypothesis, the 

number of active voxels ranged across teams from zero to tens of thousands (Extended Data 

Table 4a). Analysis of overlap between activated voxels showed that the proportion of teams 

with activation in the most frequently activated voxel for a given hypothesis ranged between 

0.23 and 0.77 (Extended Data Figure 1).

Variability of unthresholded statistical maps.

Analysis of correlation between unthresholded Z-statistic maps across teams demonstrated 

for each hypothesis a large cluster of teams whose statistical maps were strongly positively 

correlated with one another (Figure 2 and Extended Data Figure 2). Mean Spearman 

correlation between all pairs of unthresholded maps (Extended Data Table 4b) was moderate 

(mean correlation range 0.18-0.52 across hypotheses), with higher correlations within the 

main cluster of analysis teams (range 0.44-0.85 across hypotheses). An analysis of 

voxelwise heterogeneity across unthresholded maps (equivalent to tau-squared) 

demonstrated that inter-team variability was large, in many cases several times the 

variability expected across different datasets (Extended Data Figure 3a).

For Hypotheses #1 and #3, there was a subset of seven teams whose unthresholded maps 

were anticorrelated with those of the main cluster of teams. A comparison of the average 

map for the anticorrelated cluster for Hypotheses #1 and #3 confirmed this map was highly 

correlated (r=0.87) with the overall task activation map as previously reported1. Further 

analysis showed that four of these teams used models that did not properly separate the 

parametric effect of gain from overall task activation; because of the anticorrelation of value 

system activations with task activations14, this model mis-specification led to an 

anticorrelation with the parametric effects of gain. In two cases, the model included multiple 
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regressors that were correlated with the gain parameter, which modified the interpretation of 

the primary gains regressor; for one additional team, modeling details were not available.

The discrepancy between overall correlations of unthresholded maps and divergence of 

reported binary results (even within the highly correlated cluster) suggested that the 

variability in regional results might be due to procedures related to statistical correction for 

multiple comparisons and the subjective decision of teams on the anatomical specification of 

regions of interest (ROIs). To test this, we applied a consistent thresholding method and ROI 

specification on the unthresholded maps across all teams for each hypothesis. This showed 

that even using a correction method known to be liberal and a standard anatomical definition 

for all regions, the degree of variability across results was qualitatively similar to that of the 

actual reported decisions (Extended Data Figure 4). We assessed the consistency across 

teams using an image-based meta-analysis (accounting for correlations due to common 

data), which demonstrated significant active voxels for all hypotheses except for #9 after 

false discovery rate correction (Extended Data Figure 3b) and confirmatory evidence for 

Hypotheses 2, 4, 5, and 6. These results show that inconsistent results at the individual team 

level underlie consistent results when all team’s results are combined.

Prediction markets

The second aim of NARPS was to test whether peers in the field could predict the results, 

using prediction markets in which researchers trade on the outcomes of scientific analyses 

and receive monetary payouts based on performance. Prediction markets have been used to 

assess the replicability of scientific hypotheses in the social sciences, revealing correlations 

between market prices and actual scientific outcomes2-5. We performed two separate 

prediction markets: one involving members from analysis teams (“team members” market) 

and an additional independent market for researchers who had not participated in the 

analysis (“non-team members” market). The markets were open for 10 consecutive days 

approximately 1.5 months after all analysis teams had submitted their results (which were 

kept confidential). On each market, traders were endowed with tokens worth $50 and traded 

via an online market platform on the fraction of teams reporting a significant result for each 

hypothesis (i.e. the fundamental values). The market prices serve as measures of the 

aggregate beliefs of traders for the fraction of teams reporting a significant result for each 

hypothesis. Overall, n = 65 traders actively traded in the “non-team members” market and n 
= 83 traded in the “team members” market. After the markets closed, traders were paid 

based on their performance in the markets. The analysis of the markets was pre-registered on 

OSF (https://osf.io/59ksz/). Note that since some analyses were performed on the final 

market prices (i.e., the markets’ predictions), for which there is one value per hypothesis per 

market, the number of observations for each of the markets was low (N = 9), leading to 

limited statistical power. Therefore, the results should be interpreted cautiously.

The market’s predictions ranged from 0.073 to 0.952 (m = 0.599, sd = 0.325) in the “team 

members” market and from 0.476 to 0.882 (m = 0.690, sd = 0.137) in the “non-team 

members” market. Except for Hypothesis #7 in the “team members” market, all predictions 

were outside the 95% confidence intervals of the fundamental values (Figure 1 and Extended 

Data Table 5a). Spearman correlation between the fundamental values and the markets’ 
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predictions was significant for the “team members” market (r = 0.962, p < 0.001, n = 9) but 

not for the “non team members” market (r = 0.553, p = 0.122, n = 9) nor between the 

predictions of both markets (r = 0.500, p =170, n = 9).

Wilcoxon signed-rank tests suggested that traders in both markets systematically 

overestimated the fundamental values (“team members”: z = 2.886, p = 0.004, n = 9; “non-

team members”: z = 2.660, p = 0.008, n = 9). The result in the “team members” prediction 

market was not driven by over-representation of teams reporting significant results 

(Supplementary Materials). Predictions in the “team members” market did not significantly 

differ from those of the “non-team members” (Wilcoxon signed-rank test, z = 1.035, p = 

0.301, n = 9), but as mentioned above, statistical power for this test was limited. Team 

members generally traded in the direction consistent with their own team’s results (Extended 

Data Table 5b), which may explain why their collective predictions were more accurate than 

those of non-team members (Figure 1). Additional results are presented in the 

Supplementary Materials (see also Extended Data Figure 5 and Extended Data Table 5).

Discussion

The analysis of a single functional neuroimaging dataset by 70 independent analysis teams, 

all of whom used different analysis pipelines, revealed substantial variability in reported 

binary results, with high levels of disagreement across teams on a majority of tested 

hypotheses. For every hypothesis one could find at least four different analysis pipelines 

used in practice by research groups in the field that resulted in a significant outcome. Our 

findings highlight the fact that it is hard to estimate the reproducibility of single studies that 

are performed using a single analysis pipeline. Importantly, analyses of the underlying 

statistical parametric maps on which the hypothesis tests were based revealed greater 

consistency than expected from those inferences, with significant consensus in activated 

regions across groups observed via meta-analysis. Teams with highly correlated underlying 

unthresholded statistical maps nonetheless reported divergent hypothesis outcomes (Figure 

2). Detailed analysis of the workflow descriptions and statistical results submitted by the 

analysis teams identified several common analytic variables that were related to differential 

reporting of significant outcomes, including the spatial smoothness of the data (a result of 

multiple factors beyond the applied smoothing kernel), choices of analysis software and 

correction method; however, the last two were not consistently supported by nonparametric 

bootstrap analyses. In addition, we identified model specification errors for several analysis 

teams leading to statistical maps that were anticorrelated with the majority. Prediction 

markets that were performed on the outcomes of analyses demonstrated that researchers 

generally overestimated the likelihood of significant results across hypotheses, even by those 

researchers who had analyzed the data themselves, reflecting substantial optimism bias by 

researchers in the field.

The substantial amount of analytic variability, leading to variability of reported hypothesis 

results with the same data, demonstrates that steps need to be taken to improve the 

reproducibility of data analysis outcomes. First, we suggest that unthresholded statistical 

maps should be shared as a standard practice alongside thresholded statistical maps using 

tools such as NeuroVault15. In the long run, the shared maps will allow the use of image-
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based meta-analysis, which we found to provide converging results across laboratories. In 

addition, publicly sharing data and analysis code should become common practice, to enable 

others to run their own analysis with the same data or validate the code used. These practices 

alongside the use of pre-registration16 or registered reports17 will reduce researchers’ 

degrees of freedom but would not prevent analytic variability as demonstrated here; 

however, they would ensure that the impact of variability can be assessed. All of the data and 

code used in the current study are publicly available with a fully reproducible execution 

environment for all figures and results. We believe that this can serve as an example for 

future studies.

Foremost, we propose that complex datasets should be analyzed using multiple analysis 

pipelines, preferably by more than one research team. Achieving such “multiverse analysis” 

at scale will require the development of automated statistical analysis tools (e.g.18) that can 

run a broad range of pipelines and assess their convergence. Different versions of such 

“multiverse analysis” have been suggested in other fields19-21, but are not widely used. 

Analysis pipelines should also be validated using simulated data in order to assess their 

validity with regard to ground truth , and assessed for their effects on predictions with new 

data22.

Our findings emphasize the urgent need to develop new practices and tools to overcome the 

challenge of variability across analysis pipelines and its effect on analytic results. 

Nonetheless, we maintain that fMRI can provide reliable answers to scientific questions, as 

strongly demonstrated in the meta-analytic results across teams along with numerous large-

scale studies in the literature and replication of many findings using fMRI. Moreover, 

although the present investigation was limited to the analysis of a single functional 

neuroimaging dataset, it seems highly likely that similar variability will be present for other 

fields of research where the data are high-dimensional and the analysis workflows are 

complex and varied. The “multiverse” approach combined with meta-analysis is suggested 

as a promising solution. Importantly, transparent community-wide self-assessment scientific 

projects, such as the current one, are definitive evidence of the researchers’ awareness of 

reproducibility concerns and desire to assess their impact and improve practices accordingly 

(for additional discussion see Supplementary Discussion).

Methods

fMRI dataset

In order to test the variability of neuroimaging results across analysis pipelines used in 

practice in research laboratories, we distributed a single fMRI dataset to independent 

analysis groups from around the world, requesting them to test nine pre-defined hypotheses. 

The full dataset is publicly available in the Brain Imaging Data Structure (BIDS)23 on 

OpenNeuro (DOI: 10.18112/openneuro.ds001734.v1.0.4) and is described in detail in a Data 

Descriptor1.

Shortly, the fMRI dataset consisted of data from 108 participants performing a mixed 

gambles task, which is often used to study decision-making under risk. In this task, 

participants are asked on each trial to accept or reject a presented prospect. The prospects 
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consist of an equal 50% chance of either gaining a given amount of money or losing another, 

similar or different, amount of money. Participants were divided into two groups: in the 

“equal indifference” group (N = 54), the potential losses were half the size of the potential 

gains10 (reflecting the “loss aversion” phenomenon, where people tend to be more sensitive 

to losses compared to equal-sized gains24); in the “equal range” group (N = 54), the 

potential losses and the potential gains were taken from the same scale11,12. The two groups 

were used to resolve inconsistencies of previous published results.

The dataset was distributed to the teams via Globus (https://www.globus.org/). The 

distributed dataset included raw data of 108 participants (N = 54 for each experimental 

group), as well as the same data after preprocessing with fMRIprep version 1.1.4 

[RRID:SCR_016216]13. The fMRIprep preprocessing mainly included brain extraction, 

spatial normalization, surface reconstruction, head motion estimation and susceptibility 

distortion correction. Both the raw and the preprocessed datasets underwent quality 

assurance (described in detail in the Data Descriptor1).

MRI data collection was approved by the Helsinki committee at Sheba Tel Hashomer 

Medical Center and the ethics committee at Tel Aviv University, and all participants gave 

written informed consent (as described in the Scientific Data Descriptor of this dataset1). 

The Board for Ethical Questions in Science at the University of Innsbruck approved the data 

collection in the prediction markets, and certified that the project is in correspondence with 

all requirements of the ethical principles and the guidelines of good scientific practice. The 

Stanford University IRB determined that the analysis of the submitted team results did not 

meet the definition of human subject research, and thus no further IRB review was required. 

We have complied with all relevant ethical regulations.

Pre-defined hypotheses

Previous studies with the mixed gambles task suggested that activity in the vmPFC and 

ventral striatum, among other brain regions, is related to the magnitude of the potential 

gain10. A fundamental open question in the field of decision-making under risk is whether 

the magnitude of the potential loss is coded by the same brain regions (through negative 

activation), or by regions related to negative emotions, such as the amygdala10-12. The 

specific hypotheses included in NARPS were chosen to address this open question, using 

two different designs that were used in those previous studies (i.e., equal indifference versus 

equal range). Each analysis team tested nine pre-defined hypotheses (Extended Data Table 

1). Each hypothesis predicted fMRI activations in a specific brain region, in relation to a 

specific aspect of the task (gain / loss amount) and a specific group (equal indifference / 

equal range, or a comparison between the two groups). Therefore, for each hypothesis, the 

maximal sample size was 54 participants (Hypotheses #1-8) or 54 participants per group in 

the group comparison (Hypothesis #9). Although the hypotheses referred to specific brain 

regions, analysis teams were instructed to report their results based on a whole-brain 

analysis (and not on a region of interest based analysis, as sometimes used in fMRI studies).
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Analysis teams recruitment and instructions

We recruited analysis teams via social media, mainly Twitter and Facebook, as well as 

during the 2018 annual meeting of The Society for Neuroeconomics. Ninety-seven teams 

registered to participate in the study. Each team consisted of up to three members. To ensure 

independent analyses across teams, and to prevent influencing the subsequent prediction 

markets, all team members signed an electronic nondisclosure agreement that they would 

not release, publicize, or discuss their results with anyone until the end of the study. All team 

members of 82 teams signed the nondisclosure form. They were offered co-authorship on 

the present publication in return for their participation.

Analysis teams were provided with access to the full dataset. They were asked to freely 

analyze the data with their usual analysis pipeline to test the nine hypotheses and report a 

binary decision for each hypothesis on whether it was significantly supported based on a 

whole-brain analysis. While the hypotheses were region specific, we clearly requested a 

whole-brain analysis result to avoid the need of teams to create and share masks of regions 

of interest. Each team also filled in a full report of the analysis methods used (following 

COBIDAS guidelines25) and created a collection on NeuroVault15 [RRID:SCR_003806] 

with one unthresholded and one thresholded statistical maps for each hypothesis, on which 

their decisions were based (teams could optionally include additional maps in their 

collection; see Extended Data Table 3a for collections’ links). For each result (i.e., the binary 

decision on whether a given hypothesis was supported by the data or not), teams further 

reported how confident they were in this result and how similar they thought their result was 

to the results of the other teams (each measure was an integer between 1 [not at all] to 10 

[extremely]). These measures are presented in Extended Data Table 1 and Extended Data 

Table 2. In order to measure variability of results in an ecological manner, instructions to the 

analysis teams were minimized and the teams were asked to perform the analysis as they 

usually would in their own laboratory and to report the binary decision based on their own 

criteria.

Seventy of the 82 teams submitted their results and reports by the final deadline (March 

15th, 2019; overall teams were given up to 100 days, varying based on the date they joined, 

to complete and report their analysis). The dataset, reports and collections were kept private 

until the end of the study and closure of the prediction markets. In order to avoid 

identification of the teams, each team was provided with a unique random 4-character team 

ID.

Overall, 180 participants were part of NARPS analysis teams. Out of 70 analysis teams, five 

teams consisted of one member, 20 teams consisted of two members and 45 teams consisted 

of three members. Out of the 180 team members, there were 62 principal investigators (PIs), 

43 post-doctoral fellows, 53 graduate students and 22 members from other positions (e.g. 

data scientists or research analysts).

Factors related to analytic variability

In order to explore the factors related to the variability in results across teams, the reports of 

all teams were manually annotated to create a table describing the methods used by each 
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team. Code for all analyses of the reports and statistical maps submitted by the analysis 

teams is openly shared in GitHub (https://github.com/poldrack/narps). Analyses reported in 

this manuscript were performed using code release v2.0.3 (DOI: 10.5281/zenodo.3709273). 

We performed exploratory analyses of the relation between the reported hypothesis 

outcomes and several analytic choices and image features using mixed effects logistic 

regression models implemented in R, with the lme4 package26. The factors included in the 

model were: Hypothesis number, estimated smoothness (based on FSL’s smoothest 

function), use of standardized preprocessing, software package, method of correction for 

multiple comparisons and modeling of head movement. The teams were modeled as a 

random effect. One team submitted results that were not based on a whole brain analysis as 

requested, and therefore their data were excluded from all analyses.

Inferences using logistic regression models were confirmed using nonparametric bootstrap 

analysis, resampling data team-wise to maintain random effect structure. For the continuous 

or binary regressors (smoothness, movement modeling, and use of fMRIPrep data), we 

computed bootstrap confidence intervals and, as an approximate hypothesis test, tested 

whether the confidence interval includes zero. For the factorial variables (hypothesis, 

software package and multiple testing method), this was not possible because there is not a 

single coefficient for the factor; in addition, for software package and multiple testing 

methods, some bootstrap samples did not contain all values of the factor. For these variables 

we instead performed model comparison between the full model and a reduced model 

excluding each factor, and computed the proportion of times the full model was selected 

based on the model selection criterion (using both Bayesian information criterion and 

Akaike information criterion) being numerically lower in the full model27.

In addition, we performed exploratory analyses to explore the variability across statistical 

maps submitted by the teams. The unthresholded and thresholded statistical maps of all 

teams were resampled to common space (FSL MNI space, 91x109x91, 2mm isotropic) using 

nilearn28 [RRID:SCR_001362]. For unthresholded maps, we used 3rd order spline 

interpolation; for thresholded maps, we used linear interpolation and then thresholded at 0.5, 

to prevent artifacts that appeared when using nearest neighbor interpolation. Of the 69 teams 

included in the analyses, unthresholded maps of five teams and thresholded maps of four 

teams were excluded from the image-based analyses (see Extended Data Table 3b for 

details). Since some of the hypotheses reflected negative activations, which can be 

represented by either positive or negative values in the statistical maps, depending on the 

model used, we asked the teams to report the direction of the values in their maps for the 

relevant hypotheses (#5, #6, and #9). Unthresholded maps were corrected to address sign 

flips for reversed contrasts as reported by the analysis teams. In addition, t values were 

converted to z values with Hughett's transform29. All subsequent analyses of the 

unthresholded maps were performed only on voxels that contained non-zero data for all 

teams (range across hypotheses: 111,062-145,521 voxels).

We assessed the agreement between thresholded statistical maps using percent agreement, 

i.e. the percent of voxels that have the same binary value. Because the thresholded maps are 

very sparse, these values are necessarily high when computed across all voxels. Therefore, 

we also computed the agreement between pairs of statistical maps only for voxels that were 
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nonzero for at least one member of each pair. To further test the agreement across teams, we 

performed a coordinate-based meta-analysis with activation likelihood estimation (ALE; see 

Supplementary Materials)30,31.

We further computed the correlation between the unthresholded images of the 64 teams. The 

correlation matrices were clustered using Ward clustering; the number of clusters was set to 

three for all hypotheses based on visual examination of the dendrograms. A separate mean 

statistical map was then created for the teams in each cluster (see Figure 2 and Extended 

Data Figure 2). Drivers of map similarity were further assessed by modeling the median 

correlation distance of each team from the average pattern as a function of several analysis 

decisions (e.g. smoothing, whether or not the data preprocessed with fMRIprep were used, 

etc.).

To assess the impact of variability in thresholding methods and anatomical definitions across 

teams, unthresholded Z maps for each team were thresholded using a common approach. Z 

maps for each team were translated to p-values, which were then thresholded using two 

approaches: a heuristic correction (known to be liberal32), and a voxelwise false discovery 

rate correction. Note that it was not possible to compute the commonly-used familywise 

error correction using Gaussian random field theory because residual smoothness was not 

available for each team. We then identified whether there were any suprathreshold voxels 

within the appropriate anatomical region of interest for each hypothesis. The regions of 

interest for the ventral striatum and amygdala were defined anatomically based on the 

Harvard-Oxford anatomical atlas. Since there is no anatomical definition for the 

ventromedial prefrontal cortex, we defined the region using a conjunction of anatomical 

regions (including all anatomical regions in the Harvard-Oxford atlas that overlap with the 

ventromedial portion of the prefrontal cortex) and a meta-analytic map obtained from 

neurosynth.org33 for the search term “ventromedial prefrontal”.

An image-based meta-analysis (IBMA) was used to quantify the evidence for each 

hypothesis across analysis teams (Extended Data Figure 3b), accounting for the lack of 

independence due to the use of a common dataset across teams. See Supplementary 

Materials for a description of the image-based meta-analysis method.

Prediction markets

The second main goal of the Neuroimaging Analysis Replication and Prediction Study 

(NARPS) was to test the degree to which researchers in the field can predict results, using 

prediction markets2-5,34. We invited team members (researchers that were members of one 

of the analysis teams) and non-team members (researchers that were neither members of any 

of the analysis teams nor members of the NARPS research group) to participate in a 

prediction market2,35 to measure peer beliefs about the fraction of teams reporting 

significant whole-brain corrected results for each of the nine hypotheses. The prediction 

markets were conducted 1.5 months after all teams had submitted their analysis of the fMRI 

dataset. Thus, team members had information about the results of their specific team, but not 

about the results of any other team.
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Similar to previous studies2-5, participants in the prediction markets were provided with 

monetary endowments (100 Tokens, worth $50) and traded on the outcome of the 

hypotheses via a dedicated online market platform. Each hypothesis constitutes one asset in 

the market, with asset prices predicting the fraction of teams reporting significant whole-

brain corrected results for the corresponding ex-ante hypothesis examined by the analysis 

teams using the same dataset. Trading on the prediction markets was incentivized, i.e., 

traders were paid based on their performance in the markets.

Recruitment.—For the “non-team members” prediction market, we invited participants via 

social media (mainly Facebook and Twitter) and e-mails. The invitation contained a link to 

an online form on the NARPS website (www.narps.info) where participants could sign up 

using their email address.

Participants for the “team members” prediction market were invited, after all teams 

submitted their results, via email directing them to an independent registration form (with 

identical form fields) to separate participants for the two prediction markets already at the 

time of registration. Note that team members initially were not aware that they would be 

invited to participate in a separate prediction market after they had analyzed the data. The 

decision to implement a second market, consisting of traders with partial information about 

the fundamental values (i.e., the team members) was made after the teams obtained access to 

the fMRI dataset. Thus, team members were only invited to participate in the market after all 

teams had submitted their analysis results. Once the registration for participating in the 

prediction markets had been closed, we reconciled the sign-ups with the list of team 

members to ensure that team members did not mistakenly end up in the “non-team 

members” prediction market and vice versa.

In addition to their email addresses, which were used as the only key to match registrations, 

accounts in the market platform, and the teams’ analysis results, registrants were required to 

provide the following information during sign-up: (i) name, (ii) affiliation, (iii) position 

(PhD candidate, Post-doctoral researcher, Assistant Professor, Senior Lecturer, Associate 

Professor, Full Professor, Other), (iv) years since PhD, (v) gender, (vi) age, (vii) country of 

residence, (viii) self-assessed expertise in neuroimaging (Likert scale ranging from 1 to 10), 

(ix) self-assessed expertise in decision sciences (Likert scale ranging from 1 to 10), (x) 
preferred mode of payment (Amazon.de voucher, Amazon.com voucher, PayPal payment), 

and (xi) whether they are a team member of any analysis team (yes / no). The invitations to 

participate in the prediction markets were first distributed on April 9, 2019; the registration 

closed on April 29, at 4pm UTC. Upon closure of the registration, all participants received a 

personalized email containing a link to the web-based market software and their login-

credentials. The prediction markets opened on May 2, 2019 at 4pm UTC and closed on May 

12, 2019 at 4pm UTC.

Information available to participants.—All participants had access to detailed 

information about the data collection, the experimental protocol, the ex-ante hypotheses, the 

instructions given to the analysis teams, references to related papers, and detailed 

instructions about the prediction markets via the NARPS website (www.narps.info).
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Implementation of prediction markets.—To implement the prediction markets, we 

used a newly developed web-based framework dedicated for conducting continuous-time 

online market experiments, inspired by the trading platform in the Experimental Economics 

Replication Project (EERP3) and the Social Sciences Replication Project (SSRP4). Similar to 

these previous implementations, there were two main views on the platform: (i) the market 

overview and (ii) the trading interface. The market overview showed the nine assets (i.e., one 

corresponding to each hypothesis) in tabular format, including information on the 

(approximate) current price for buying a share and the number of shares held (separated for 

long and short positions) for each of the nine hypotheses. Via the trading interface, which 

was shown after clicking on any of the hypotheses, the participant could make investment 

decisions and view price developments for the particular asset.

Note that initially, there was an error in the labelling of two assets (i.e., hypotheses) in the 

trading interface and the overview table of the web-based trading platform (the more 

detailed hypothesis description available via the info symbol on the right hand side of the 

overview table contained the correct information): Hypotheses 7 and 8 mistakenly referred 

to negative rather than positive effects of losses in the Amygdala. One of the participants 

informed us about the inconsistency between the information on the trading interface and the 

information provided on the website on May 6. The error was corrected immediately on the 

same day and all participants were informed about the mistake on our part via a personal 

email notification (on May 6, 2019, 3:28pm UTC), pointing out explicitly which information 

was affected and asking them to double-check their holdings in the two assets to make sure 

that they are invested in the intended direction.

Trading and market pricing.—In both prediction markets, traders were endowed with 

100 Tokens (the experimental currency unit). Once the markets opened, these Tokens could 

be used to trade shares in the assets (i.e., hypotheses). Unlike prediction markets on binary 

outcomes (e.g., the outcomes of replications as in previous studies3,4), for which market 

prices were typically interpreted as the predicted probability of the outcome to occur36 

(though see37 and38 for caveats), the prediction markets accompanying the team analyses in 

the current study were implemented in terms of vote-share-markets. Hence, the prediction 

market prices serve as measures of the aggregate beliefs of traders for the fraction of teams 

reporting that the hypotheses were supported and can fluctuate between 0 (no team reported 

a significant result) and 1 (all teams reported a significant result).

Prices were determined by an automated market maker implementing a logarithmic market 

scoring rule39. At the beginning of the markets, all assets were valued at a price of 0.50 

Tokens per share. The market maker calculated the price of a share for each infinitesimal 

transaction and updated the price based on the scoring rule. This ensured both that trades 

were always possible even when there was no other participant with whom to trade and that 

participants had incentives to invest according to their beliefs40. The logarithmic scoring rule 

uses the net sales (shares held - shares borrowed) the market maker has done so far in a 

market to determine the price for an infinitesimal trade as p = es/b / (es/b + 1). The parameter 

b determines the liquidity provided by the market maker and controls how strongly the 

market price is affected by a trade. We set the liquidity parameter to b = 100, implying that 
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by investing 10 Tokens, traders could move the price of a single asset from 0.50 to about 

0.55.

Investment decisions for a particular hypothesis were made from the market’s trading 

interface. In the trading overview, participants could see the (approximate) price of a new 

share, the number of shares they currently held (separated for long and short positions), and 

the number of Tokens their current position was worth if they liquidated their shares. The 

trading page also contained a graph depicting previous price developments. To make an 

adjustment to their current position, participants could choose either to increase or decrease 

their position by a number of Tokens of their choice. The trading procedures and market 

pricing are described in more detail in Camerer et al.3.

Incentivization.—Once the markets had been closed, the true “fundamental value” (FV) 

for each asset (i.e., the fraction of teams that reported a significant result for the particular 

hypothesis) was determined and gains and losses were calculated as follows: If holdings in a 

particular asset were positive (i.e., the trader acted as a net buyer), the payout was calculated 

as the fraction of analysis teams reporting a significant result for the associated hypothesis 

multiplied by the number of shares held in the particular asset; If a trader’s holdings were 

negative (i.e., the trader acted as a net seller), the (absolute) amount of shares held was 

valued at the price differential between 1 and the fraction of teams reporting a significant 

result for the associated hypothesis.

Any Tokens that had not been invested into shares when the market closed were voided. Any 

Tokens awarded as a result of holding shares were converted to USD at a rate of 1 Token = 

$0.5. The final payments were transferred to participants during the months May to 

September 2019 in form of Amazon.com giftcards, Amazon.de giftcards, or PayPal 

payments, depending on the preferred mode of payment indicated by the participants upon 

registration for participating in the prediction markets.

Participants.—In total, 96 “team members” and 91 “non-team members” signed up to 

participate in the prediction markets. N = 83 “team members” and N = 65 “non-team 

members” actively participated in the markets. The number of traders active in each of the 

assets (i.e., hypotheses) ranged from 46 to 76 (m = 56.4, sd = 8.9) in the “team members” set 

of markets and from 35 to 58 (m = 47.1, sd = 7.9) in the “non-team members” set of 

markets. See Extended Data Table 5c for data about trading volume on the prediction 

markets.

Of the participants, 10.2% did not work in academia (but hold a PhD), 34.2% were PhD 

students, 43.3% were post-docs or assistant professors, 7.5% were lecturers or associate 

professors, and 4.8% were full professors. 27.8% of the participants were female. The 

average time spent in academia after obtaining the PhD was 4.1 years. The majority of the 

participants resided in Europe (46.3%) and North America (46.3%).

Pre-Registration.—All analyses of the prediction markets data reported were pre-

registered at https://osf.io/pqeb6/. The pre-registration was completed after the markets 

opened, but before the markets closed. Only one member of the NARPS research group, 
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Felix Holzmeister, had any information about the prediction market prices before the 

markets closed (as he monitored the prediction markets). He was not involved in writing the 

pre-registration. Only two members of the NARPS research group, Rotem Botvinik-Nezer 

and Tom Schonberg, had any information about the results reported by the 70 analyses teams 

before the prediction markets closed. Neither of them were involved in writing the pre-

registration either.

For additional details on the prediction markets, see the Supplementary Materials.

Data and code availability

The full fMRI dataset is publicly available on OpenNeuro (DOI: 10.18112/

openneuro.ds001734.v1.0.4) and is described in details in a Data Descriptor1.

Code for all analyses of the reports and statistical maps submitted by the analysis teams is 

openly shared in GitHub (https://github.com/poldrack/narps). Image analysis code was 

implemented within a Docker container, with software versions pinned for reproducible 

execution (https://cloud.docker.com/repository/docker/poldrack/narps-analysis - 

tag:paper_analysis). Python code was automatically tested for quality using the flake8 static 

analysis tool and the codacy.com code quality assessment tool, and the results of the image 

analysis workflow were validated using simulated data. Imaging analysis code was 

independently reviewed by an expert who was not involved in writing the original code. 

Prediction market analyses were performed using R v3.6.1; packages were installed using 

the checkpoint package, which reproducibly installs all package versions as of a specified 

date (August 13th, 2019). Analyses reported in this manuscript were performed using code 

release v2.0.3 (DOI: 10.5281/zenodo.3709273).

The results reported by all teams are presented in Extended Data Table 2. A table describing 

the methods used by the analysis teams is available with the analysis code. NeuroVault 

collections containing the submitted statistical maps are available via the links provided in 

Extended Data Table 3a.

Interested readers may obtain access to the data and run the full analysis stream on the team 

submissions by following the directions at: https://github.com/poldrack/narps/tree/master/

ImageAnalyses.

Access to the raw data requires specifying a URL for the dataset, which is: https://

zenodo.org/record/3528329/files/narps_origdata_1.0.tgz

Results (automatically generated figures, results, and output logs) for imaging analyses are 

available for anonymous download at DOI:10.5281/zenodo.3709275.

Although not required to, several analysis teams also publicly shared their analysis code. 

Extended Data Table 3d includes these teams along with the link to their code.
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Extended Data

Extended Data Figure 1 ∣. Voxels overlap.
Maps showing at each voxel the proportion of teams (out of N = 65 teams) reporting 

significant activations in their thresholded statistical map, for each hypothesis (labeled H1 - 

H9), thresholded at 10% (i.e., voxels with no color were significant in fewer than 10% of 

teams). +/− refers to direction of effect, gain/loss refers to the effect being tested, and equal 

indifference (EI) / equal range (ER) refers to the group being examined or compared. 

Hypotheses #1 and #3, as well as hypotheses #2 and #4, share the same statistical maps as 

the hypotheses are for the same contrast and experimental group, but for different regions 

(see Extended Data Table 1). Images can be viewed at https://identifiers.org/

neurovault.collection:6047
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Extended Data Figure 2 ∣. Variability of whole-brain unthresholded maps for hypotheses 2, 4 - 9.
For each hypothesis, we present a heatmap based on Spearman correlations between 

unthresholded statistical maps (N = 64), clustered according to their similarity, and the 

average of unthresholded images for each cluster (cluster colors in titles refer to colors in 

left margin of heatmap). Green / red at the columns represent binary results (significant / not 

significant, respectively) reported by the analysis teams; row colors represent cluster 

membership. Maps are thresholded at an uncorrected value of Z > 2 for visualization. 

Unthresholded maps for Hypothesis #2 and Hypothesis #4 are identical (as they both relate 

to the same contrast and group, but different regions), and the colors represent reported 

results for Hypothesis #2. For Hypotheses #1 and #3 see Figure 2.
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Extended Data Figure 3 ∣. Variability and consensus of unthresholded statistical maps (N = 64).
(a) Maps of estimated between-team variability (tau) at each voxel for each hypothesis. 

Images can be viewed at https://identifiers.org/neurovault.collection:6050. (b) Image-based 

meta-analysis (IBMA) results. A consensus analysis was performed on the unthresholded 

statistical maps to obtain a group statistical map for each hypothesis, accounting for the 

correlation between teams due to the same underlying data (see Methods). Maps are 

presented for each hypothesis showing voxels (in color) where the group statistic was 

significantly greater than zero after voxelwise correction for false discovery rate (p < 0.05). 

Color bar reflects statistical value (Z) for the meta-analysis. Images can be viewed at https://

identifiers.org/neurovault.collection:6051.

Hypotheses #1 and # 3, as well as Hypotheses #2 and #4, share the same unthresholded 

maps, as they relate to the same contrast and group but for different regions (see Extended 

Data Table 1).
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Extended Data Figure 4 ∣. Results of the consistent thresholding and ROI selection analysis (N = 
64).
(a) Activation for each hypothesis as determined using consistent thresholding (black: p < 

0.001 and cluster size > 10 voxels; blue: FDR correction with p < 0.05) and ROI selection 

across teams (y-axis), versus actual proportion of teams reporting activation (x-axis). 

Numbers next to each symbol represent the hypothesis number for each point. (b) Results 

from re-thresholding of unthresholded maps using uncorrected (p < 0.001, cluster size k > 

10) and false discovery rate correction (pFDR < 5%) and common anatomical regions of 

interest for each hypothesis. A team is recorded as having an activation if one or more 

significant voxels are found in the ROI. Results for image-based meta-analysis (IBMA) for 

each hypothesis are also presented, thresholded at pFDR < 5% as well.
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Extended Data Figure 5 ∣. Prediction markets over time (N = 240 observations [10 days X 24 
hours]).
(a). Panel regressions. The table summarizes the results of pre-registered fixed-effects panel 

regressions of the predictions absolute errors (i.e., the absolute deviation of the market price 

from the fundamental value) on an hourly basis (average price of all transactions within an 

hour) on time and prediction market indicators. Standard errors are computed using a robust 

estimator. (b) Market prices for each of the nine hypotheses separated for the team members 

(green) and non-team members (blue) prediction markets. The figure shows the average 

prediction market prices per hour separated for the two prediction markets for the time the 
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markets were open (10 days, i.e., 240 hours). The gray line indicates the actual share of 

analysis teams reporting a significant result for the hypothesis (i.e., the fundamental value).

Extended Data Table 1 ∣
Hypotheses and results

Each hypothesis is described along with the fraction of teams reporting a whole-brain 

corrected significant result (out of N = 70 teams) and two measures reported by the analysis 

teams for the specific hypothesis (both rated 1-10): (1) How confident are you about this 

result? (2) How similar do you think your result is to the other analysis teams? For these 

ordinal measures, median values are presented along with the median absolute deviation in 

brackets. See Supplementary Materials for analysis of the confidence level and similarity 

estimation.

Hypothesis description

Fraction of 
teams

reporting a 
significant 

result

Median
confidence level

Median 
similarity
estimation

#1 Positive parametric effect of gains in the vmPFC
(equal indifference group) 0.371 7

(2)
7

(1.5)

#2 Positive parametric effect of gains in the vmPFC
(equal range group) 0.214 7

(1.5)
7

(1)

#3
Positive parametric effect of gains in the ventral 
striatum
(equal indifference group)

0.229 6
(1)

7
(1)

#4
Positive parametric effect of gains in the ventral 
striatum
(equal range group)

0.329 6
(1)

7
(1)

#5 Negative parametric effect of losses in the vmPFC
(equal indifference group) 0.843 8

(1)
8

(1)

#6 Negative parametric effect of losses in the vmPFC
(equal range group) 0.329 7

(1)
7

(1)

#7 Positive parametric effect of losses in the amygdala
(equal indifference group) 0.057 7

(1)
8

(1)

#8 Positive parametric effect of losses in the amygdala
(equal range group) 0.057 7

(1)
8

(1)

#9 Greater positive response to losses in amygdala
(equal range group vs. equal indifference group) 0.057 6

(1)
7

(1)
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Extended Data Table 2 ∣
Results submitted by analysis teams*

For each team, the left section of the table represents the reported binary decision (green = 

yes, red = no) and how confident they were in their result (from 1 [not at all] to 10 

[extremely]) for each hypothesis (H1-H9). The right section displays the information 

included for each team in the statistical model for hypothesis decisions. Estimated (est.) 

smoothing values represent full width at half-maximum (FWHM; teams with a blank value 

were excluded from further analysis).

Team 
ID H1 H2 H3 H4 H5 H6 H7 H8 H9 Est. 

smoothing Package fMRIPrep Testing Movement

08MQ 8 6 8 6 7 7 7 7 6 13.14 FSL No Non-
parametric Yes

0C7Q 7 7 8 8 8 7 10 10 9 8.68 Other Yes Non-
parametric Yes

0ED6 7 9 8 7 8 8 9 9 6 7.86 SPM No Parametric Yes

0H5E 4 7 7 6 8 5 8 7 1 14.17 SPM No Parametric No

0I4U 4 7 6 8 9 9 9 9 9 8.69 SPM No Parametric Yes

0JO0 7 5 5 5 5 5 5 5 5 8.12 Other Yes Parametric Yes

16IN 8 7 6 6 8 7 8 6 6 Other Yes Other No

1K0E 7 9 6 6 8 7 7 6 9 Other No Non-
parametric Yes

1KB2 6 6 8 8 5 5 8 8 7 13.06 FSL No Parametric Yes

1P0Y 8 8 1 1 8 8 5 5 5 9.13 SPM No Parametric No

27SS 4 6 7 7 7 7 6 8 4 11.37 AFNI No Parametric Yes

2T6S 8 9 6 6 10 9 7 8 10 14.93 SPM Yes Parametric Yes

2T7P 8 8 8 8 8 8 8 8 8 7.66 Other No Other Yes

3C6G 6 7 7 5 8 8 8 8 8 14.26 SPM No Parametric Yes

3PQ2 9 8 7 7 7 8 8 8 7 5.79 FSL No Parametric Yes

3TR7 2 2 3 4 8 5 8 6 5 17.4 SPM Yes Parametric Yes

43FJ 3 3 5 5 10 10 10 10 10 10.66 FSL No Parametric Yes

46CD 9 8 5 8 9 8 9 9 5 10.92 Other No Parametric Yes

4SZ2 7 5 6 6 9 9 7 8 7 6.65 FSL Yes Parametric No

4TQ6 7 9 10 9 7 8 10 10 9 14.88 FSL Yes Non-
parametric No

50GV 10 10 10 10 10 10 10 10 10 10.26 FSL Yes Parametric No

51PW 8 8 8 8 8 8 6 6 7 11.15 FSL Yes Parametric Yes

5G9K 7 7 7 7 7 7 7 7 7 SPM Yes Parametric Yes

6FH5 9 2 8 8 10 8 8 9 9 12.22 SPM No Parametric Yes

6VV2 8 8 8 6 9 7 8 7 6 7.2 AFNI No Parametric Yes

80GC 9 9 8 4 3 9 6 5 4 4.02 AFNI Yes Parametric Yes

94GU 8 8 8 8 8 8 8 8 8 11.19 SPM No Parametric Yes

98BT 9 7 7 8 9 7 8 8 8 11.48 SPM No Parametric Yes

9Q6R 10 10 10 10 10 10 8 8 8 10.28 FSL No Parametric Yes

9T8E 5 5 5 5 5 5 5 5 4 9.85 SPM Yes Non-
parametric Yes
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Team 
ID H1 H2 H3 H4 H5 H6 H7 H8 H9 Est. 

smoothing Package fMRIPrep Testing Movement

9U7M 7 9 9 9 9 7 9 7 7 14.78 Other No Parametric Yes

AO86 7 7 7 7 7 7 7 7 7 7.49 Other Yes Non-
parametric Yes

B23O 6 6 7 7 8 7 6 6 8 3.32 FSL Yes Non-
parametric No

B5I6 10 10 5 5 10 6 8 7 6 9.84 FSL Yes Non-
parametric Yes

C22U 8 7 5 8 9 8 8 8 8 11.16 FSL No Parametric No

C88N 7 8 7 4 9 7 8 8 6 11.62 SPM Yes Parametric No

DC61 5 1 5 2 9 5 5 5 5 9.58 SPM Yes Parametric Yes

E3B6 3 7 6 6 8 8 7 7 7 12.8 SPM Yes Parametric Yes

E6R3 5 5 7 3 4 4 7 7 7 9.28 Other Yes Other Yes

I07H 3 3 3 3 9 9 9 9 9 5.59 Other Yes Non-
parametric No

I52Y 8 8 8 8 8 8 8 8 8 11.42 FSL No Non-
parametric Yes

I9D6 7 7 7 7 1 7 7 6 7 6.21 AFNI No Parametric Yes

IZ20 7 7 7 7 7 7 7 6 6 21.28 Other No Parametric No

J7F9 9 8 9 7 9 7 9 9 9 14.88 SPM Yes Parametric Yes

K9P0 10 10 10 5 10 8 9 9 10 8.05 AFNI Yes Parametric Yes

L1A8 8 5 7 7 8 8 3 8 3 SPM No Parametric Yes

L3V8 9 9 9 9 9 9 9 9 9 14.74 SPM No Parametric No

L7J7 10 9 9 5 8 8 8 9 8 11.76 SPM Yes Parametric Yes

L9G5 5 4 4 6 10 10 9 9 7 7.22 FSL No Parametric No

O03M 3 8 8 2 8 7 7 7 7 3.47 AFNI Yes Non-
parametric Yes

O21U 8 8 8 8 8 8 8 8 8 8.26 FSL Yes Parametric Yes

O6R6 8 8 8 8 8 8 8 8 8 3.06 FSL Yes Non-
parametric No

P5F3 3 5 7 7 4 4 6 6 7 12.94 FSL No Parametric Yes

Q58J 9 9 9 9 9 9 9 9 9 16.24 FSL No Parametric No

Q6O0 7 8 8 9 9 8 8 6 7 14.58 SPM Yes Parametric Yes

R42Q 5 5 6 6 6 6 7 8 8 12.73 Other No Parametric Yes

R5K7 6 8 8 7 9 7 8 8 7 12.06 SPM No Parametric Yes

R7D1 4 7 5 5 9 5 8 9 8 8.93 Other Yes Non-
parametric Yes

R9K3 5 3 2 5 8 5 3 4 5 11.77 SPM Yes Parametric Yes

SM54 5 9 5 8 8 6 8 8 8 7.05 Other Yes Parametric Yes

T54A 5 9 2 6 9 9 5 5 5 12.28 FSL Yes Non-
parametric No

U26C 8 8 8 8 10 8 8 8 9 10.38 SPM Yes Parametric Yes

UI76 10 6 10 10 10 6 10 10 5 6.6 AFNI Yes Parametric Yes

UK24 4 4 4 4 4 4 4 4 4 10.76 SPM No Parametric No

V55J 4 5 7 7 4 7 5 7 7 12.85 SPM No Parametric No

VG39 6 7 8 8 10 7 9 6 5 SPM Yes Parametric No
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Team 
ID H1 H2 H3 H4 H5 H6 H7 H8 H9 Est. 

smoothing Package fMRIPrep Testing Movement

X19V 6 7 8 5 9 6 9 9 9 8.48 FSL Yes Parametric Yes

X1Y5 6 6 7 7 8 6 8 8 8 8.69 Other Yes Non-
parametric Yes

X1Z4 8 6 4 4 9 5 4 4 4 Other No Non-
parametric Yes

XU70 4 5 8 9 9 9 6 8 8 7.17 FSL No Parametric Yes

*
Three teams changed their decisions after the end of the project. Team L3V8 changed their decision regarding Hypothesis 

#6 from “yes” to “no”. Team VG39 changed their decisions regarding Hypotheses #3, #4 and #5 from “yes” to “no”. Team 
U26C changed their decision regarding Hypothesis #5 from “yes” to “no”. Results along the paper and in this table reflect 
the final results as they were reported at the end of the project (i.e., before this change), as prediction markets were based 
on those results.

Extended Data Table 3 ∣
Data links and analysis related tables

(a) Numbers of public NeuroVault collections of all analysis teams (full link: https://

neurovault.org/collections/ <insert collection number here>/). (b) Description of teams 

excluded from the analyses of statistical maps. (c) Summary of mixed-effects logistic 

regression modeling of decision outcomes (N = 64 per hypothesis) as a function of different 

factors including the hypothesis (1-9) and various aspects of statistical modeling (for 

modeling details see https://github.com/poldrack/narps/blob/master/ImageAnalyses/

DecisionAnalysis.Rmd). (d) Links to shared analysis code of some of the analysis teams.

a

Team ID Collection Team ID Collection

08MQ 4953 C88N 4812

0C7Q 5652 DC61 4963

0ED6 4994 E3B6 4782

0H5E 4936 E6R3 4959

0I4U 4938 I07H 5001

0JO0 4807 I52Y 4933

16IN 4927 I9D6 4978

1K0E 4974 IZ20 4979

1KB2 4945 J7F9 4949

1P0Y 5649 K9P0 4961

27SS 4975 L1A8 5680

2T6S 4881 L3V8 4888

2T7P 4917 L7J7 4866

3C6G 4772 L9G5 5173

3PQ2 4904 O03M 4972

3TR7 4966 O21U 4779

43FJ 4824 O6R6 4907

46CD 5637 P5F3 4967

4SZ2 5665 Q58J 5164

4TQ6 4869 Q6O0 4968
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a

Team ID Collection Team ID Collection

50GV 4735 R42Q 5619

51PW 5167 R5K7 4950

5G9K 4920 R7D1 4954

6FH5 5663 R9K3 4802

6VV2 4883 SM54 5675

80GC 4891 T54A 4876

94GU 5626 U26C 4820

98BT 4988 UI76 4821

9Q6R 4765 UK24 4908

9T8E 4870 V55J 4919

9U7M 4965 VG39 5496

AO86 4932 X19V 4947

B23O 4984 X1Y5 4898

B5I6 4941 X1Z4 4951

C22U 5653 XU70 4990

b

Team ID Exclusion reason Unthresholded
maps excluded

Thresholded
maps excluded

1K0E Used surface-based analysis (only provided data for cortical 
ribbon) X X

L1A8 Not in MNI standard space X X

VG39 Performed small volume corrected instead of whole-brain 
analysis X X

X1Z4 Used surface-based analysis (only provided data for cortical 
ribbon) X X

16IN Values in the unthresholded images are not z / t stats X

5G9K Values in the unthresholded images are not z / t stats X

2T7P
Used a method which does not create thresholded images (and 
are therefore not included in the analyses of the thresholded 
images)

X

c

Effects Chi-squared P value Delta R2

Hypothesis 185.390 0.000 0.350

Estimated smoothness 13.210 0.000 0.040

Used fMRIPprep data 2.270 0.132 0.010

Software package 13.450 0.004 0.040

Multiple correction method 7.500 0.024 0.020

Movement modeling 1.160 0.281 0.000

d

Team ID Link to shared analysis codes

16IN https://github.com/jennyrieck/NARPS
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d

Team ID Link to shared analysis codes

2T7P https://osf.io/3b57r

E3B6 doi.org/10.5281/zenodo.3518407

Q58J https://github.com/amrka/NARPS_Q58J

Extended Data Table 4 ∣
Variability of statistical maps across teams

(a) Variability in the number of significantly (sig.) activated voxels reported across teams (N 
= 65 teams). (b) Mean Spearman correlation between the unthresholded statistical maps for 

all pairs of teams and separately for pairs of teams within each cluster, for each hypothesis 

(N = 64 teams).

a

Hypothesis Minimum sig. voxels Maximum sig. voxels Median sig. voxels N empty images

1 0 118181 1940 8

2 0 135583 8120 2

3 0 118181 1940 8

4 0 135583 8120 3

5 0 76569 6527 11

6 0 72732 167 25

7 0 147087 9383 8

8 0 129979 475 16

9 0 49062 266 29

b

Hypothesis Correlation
(mean)

Cluster1 Cluster2 Cluster3

Correlation Cluster 
size Correlation Cluster 

size Correlation Cluster 
size

1+3 0.394 0.670 50 0.680 7 0.095 7

2+4 0.521 0.736 43 0.253 14 0.659 7

5 0.485 0.777 41 0.329 20 0.342 3

6 0.259 0.442 47 0.442 12 0.156 5

7 0.487 0.851 31 0.466 25 0.049 8

8 0.302 0.593 36 0.256 23 −0.044 5

9 0.205 0.561 47 0.568 8 0.106 9
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Extended Data Table 5 ∣
Prediction markets results and additional data

(a). A summary of the prediction market results. FV indicates the fundamental value, i.e., 

the actual fraction of teams (out of N = 70 teams) reporting significant results for the 

hypothesis. 95% CI refers to the 95% confidence interval corresponding to the fundamental 

value (estimated with a normal approximation to the binomial distribution). Values marked 

with an asterisk are not within the corresponding 95% CI. (b) Consistency of traders’ 

holdings and team results. The top section of the table reports two-sided Spearman rank 

correlations between traders’ final holdings and the binary result reported by their team and 

the corresponding p-value for each hypothesis. The lower section reports the share of 

traders’ holdings that are consistent with the results reported by their team. Consistent refers 

to positive (negative) holdings if the team reported a significant (non-significant) result. Z- 

and p-values refer to Wilcoxon signed-rank tests for the share of consistent holdings being 

equal to 0.5. Average holdings if (in)consistent refer to the mean final holdings, separated 

for consistent and inconsistent traders. (c) The table depicts additional data for each of the 

nine hypotheses. Tokens invested indicates the average number of tokens invested per 

transaction and Volume (Shares) refers to the mean number of shares bought or sold per 

transaction. Transactions describes the overall number of transactions recorded and # 

Traders refers to the number of traders who bought or sold shares of the particular asset at 

least once.

a

Hypothesis FV CI Non-teams market prediction Teams market prediction

1 0.37 [0.26-0.48] 0.727 * 0.814 *

2 0.21 [0.12-0.31] 0.73 * 0.753 *

3 0.23 [0.13-0.33] 0.881 * 0.743 *

4 0.33 [0.22-0.44] 0.882 * 0.789 *

5 0.84 [0.76-0.93] 0.686 * 0.952 *

6 0.33 [0.22-0.44] 0.685 * 0.805 *

7 0.06 [0.00-0.11] 0.563 * 0.073

8 0.06 [0.00-0.11] 0.584 * 0.274 *

9 0.06 [0.00-0.11] 0.476 * 0.188 *

b

Hypothesis 1 2 3 4 5 6 7 8 9

Spearman rho 0.58 0.56 0.58 0.64 0.47 0.74 0.23 0.37 0.31

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.02

Share of consistent holdings 0.71 0.68 0.70 0.80 0.89 0.74 0.80 0.80 0.75

Z (signed rank test) 3.40 2.78 2.82 4.24 6.81 3.24 4.34 4.34 3.64

p-value (signed rank test) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average holdings if consistent 5.61 21.14 25.80 13.11 −115.50 7.31 34.61 24.23 23.54

Average holdings if 
inconsistent 1.04 −6.90 −8.03 0.03 18.26 1.58 −14.63 −8.29 −11.61
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c

Hypothesis

Tokens 
invested

(Non-
teams)

Volume
(Non-
teams)

# 
Traders
(Non-
teams)

# 
Transactions
(Non-teams)

Tokens 
invested
(Teams)

Volume
(Teams)

# 
Traders
(Teams)

# 
Transactions

(Teams)

1 8.568 20.175 55 139 12.643 25.671 64 213

2 10.51 22.544 53 98 11.632 22.908 58 171

3 12.818 24.709 58 132 7.773 15.837 52 141

4 11.134 20.397 49 112 8.126 15.479 52 127

5 6.873 14.636 38 71 14.48 30.76 76 244

6 6.806 12.663 35 72 8.097 16.676 46 134

7 7.99 15.209 41 98 7.131 15.864 52 160

8 8.791 19.072 45 91 7.085 14.598 52 141

9 10.427 21.118 50 131 9.506 18.812 56 178
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Figure 1: Fraction of teams reporting a significant result and prediction market beliefs.
The figure depicts final market prices for the “team members” (blue dots; N = 83 active 

traders) and the “non-team members” (green dots; N = 65 active traders) markets as well as 

the as well as the observed fraction of teams reporting significant results (fundamental value, 

pink dots; N = 70 analysis teams), and the corresponding 95% confidence intervals for each 

of the nine hypotheses (note that the hypotheses are sorted based on the fundamental value). 

Confidence intervals were constructed by assuming convergence of the binomial distribution 

towards the normal.
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Figure 2. Analytic variability in whole-brain statistical results for Hypothesis 1.
Top panel: Spearman correlation values between whole-brain unthresholded statistical maps 

for each team (N = 64) were computed and clustered according to their similarity (using 

Ward clustering on Euclidean distances). Row colors (left) denote cluster membership, while 

column colors (top) represent hypothesis decisions (green: Yes, red: No). Brackets represent 

clustering. Bottom panel: Average statistical maps (thresholded at uncorrected z > 2.0) for 

each of the three clusters depicted in the left panel. The probability of reporting a positive 

hypothesis outcome (pYes) is presented for each cluster. Images can be viewed at https://

identifiers.org/neurovault.collection:6048.
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